OpenCoverage

bn_lcl.h

Absolute File Name:/home/opencoverage/opencoverage/guest-scripts/openssl/src/crypto/bn/bn_lcl.h
Source codeSwitch to Preprocessed file
LineSourceCount
1/*-
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.-
3 *-
4 * Licensed under the OpenSSL license (the "License"). You may not use-
5 * this file except in compliance with the License. You can obtain a copy-
6 * in the file LICENSE in the source distribution or at-
7 * https://www.openssl.org/source/license.html-
8 */-
9-
10#ifndef HEADER_BN_LCL_H-
11# define HEADER_BN_LCL_H-
12-
13/*-
14 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or-
15 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our-
16 * Configure script and needs to support both 32-bit and 64-bit.-
17 */-
18# include <openssl/opensslconf.h>-
19-
20# if !defined(OPENSSL_SYS_UEFI)-
21# include "internal/bn_conf.h"-
22# endif-
23-
24# include "internal/bn_int.h"-
25-
26/*-
27 * These preprocessor symbols control various aspects of the bignum headers-
28 * and library code. They're not defined by any "normal" configuration, as-
29 * they are intended for development and testing purposes. NB: defining all-
30 * three can be useful for debugging application code as well as openssl-
31 * itself. BN_DEBUG - turn on various debugging alterations to the bignum-
32 * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up-
33 * mismanagement of bignum internals. You must also define BN_DEBUG.-
34 */-
35/* #define BN_DEBUG */-
36/* #define BN_DEBUG_RAND */-
37-
38# ifndef OPENSSL_SMALL_FOOTPRINT-
39# define BN_MUL_COMBA-
40# define BN_SQR_COMBA-
41# define BN_RECURSION-
42# endif-
43-
44/*-
45 * This next option uses the C libraries (2 word)/(1 word) function. If it is-
46 * not defined, I use my C version (which is slower). The reason for this-
47 * flag is that when the particular C compiler library routine is used, and-
48 * the library is linked with a different compiler, the library is missing.-
49 * This mostly happens when the library is built with gcc and then linked-
50 * using normal cc. This would be a common occurrence because gcc normally-
51 * produces code that is 2 times faster than system compilers for the big-
52 * number stuff. For machines with only one compiler (or shared libraries),-
53 * this should be on. Again this in only really a problem on machines using-
54 * "long long's", are 32bit, and are not using my assembler code.-
55 */-
56# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \-
57 defined(OPENSSL_SYS_WIN32) || defined(linux)-
58# define BN_DIV2W-
59# endif-
60-
61/*-
62 * 64-bit processor with LP64 ABI-
63 */-
64# ifdef SIXTY_FOUR_BIT_LONG-
65# define BN_ULLONG unsigned long long-
66# define BN_BITS4 32-
67# define BN_MASK2 (0xffffffffffffffffL)-
68# define BN_MASK2l (0xffffffffL)-
69# define BN_MASK2h (0xffffffff00000000L)-
70# define BN_MASK2h1 (0xffffffff80000000L)-
71# define BN_DEC_CONV (10000000000000000000UL)-
72# define BN_DEC_NUM 19-
73# define BN_DEC_FMT1 "%lu"-
74# define BN_DEC_FMT2 "%019lu"-
75# endif-
76-
77/*-
78 * 64-bit processor other than LP64 ABI-
79 */-
80# ifdef SIXTY_FOUR_BIT-
81# undef BN_LLONG-
82# undef BN_ULLONG-
83# define BN_BITS4 32-
84# define BN_MASK2 (0xffffffffffffffffLL)-
85# define BN_MASK2l (0xffffffffL)-
86# define BN_MASK2h (0xffffffff00000000LL)-
87# define BN_MASK2h1 (0xffffffff80000000LL)-
88# define BN_DEC_CONV (10000000000000000000ULL)-
89# define BN_DEC_NUM 19-
90# define BN_DEC_FMT1 "%llu"-
91# define BN_DEC_FMT2 "%019llu"-
92# endif-
93-
94# ifdef THIRTY_TWO_BIT-
95# ifdef BN_LLONG-
96# if defined(_WIN32) && !defined(__GNUC__)-
97# define BN_ULLONG unsigned __int64-
98# else-
99# define BN_ULLONG unsigned long long-
100# endif-
101# endif-
102# define BN_BITS4 16-
103# define BN_MASK2 (0xffffffffL)-
104# define BN_MASK2l (0xffff)-
105# define BN_MASK2h1 (0xffff8000L)-
106# define BN_MASK2h (0xffff0000L)-
107# define BN_DEC_CONV (1000000000L)-
108# define BN_DEC_NUM 9-
109# define BN_DEC_FMT1 "%u"-
110# define BN_DEC_FMT2 "%09u"-
111# endif-
112-
113-
114/*--
115 * Bignum consistency macros-
116 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from-
117 * bignum data after direct manipulations on the data. There is also an-
118 * "internal" macro, bn_check_top(), for verifying that there are no leading-
119 * zeroes. Unfortunately, some auditing is required due to the fact that-
120 * bn_fix_top() has become an overabused duct-tape because bignum data is-
121 * occasionally passed around in an inconsistent state. So the following-
122 * changes have been made to sort this out;-
123 * - bn_fix_top()s implementation has been moved to bn_correct_top()-
124 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and-
125 * bn_check_top() is as before.-
126 * - if BN_DEBUG *is* defined;-
127 * - bn_check_top() tries to pollute unused words even if the bignum 'top' is-
128 * consistent. (ed: only if BN_DEBUG_RAND is defined)-
129 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.-
130 * The idea is to have debug builds flag up inconsistent bignums when they-
131 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if-
132 * the use of bn_fix_top() was appropriate (ie. it follows directly after code-
133 * that manipulates the bignum) it is converted to bn_correct_top(), and if it-
134 * was not appropriate, we convert it permanently to bn_check_top() and track-
135 * down the cause of the bug. Eventually, no internal code should be using the-
136 * bn_fix_top() macro. External applications and libraries should try this with-
137 * their own code too, both in terms of building against the openssl headers-
138 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it-
139 * defined. This not only improves external code, it provides more test-
140 * coverage for openssl's own code.-
141 */-
142-
143# ifdef BN_DEBUG-
144/*-
145 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with-
146 * bn_correct_top, in other words such vectors are permitted to have zeros-
147 * in most significant limbs. Such vectors are used internally to achieve-
148 * execution time invariance for critical operations with private keys.-
149 * It's BN_DEBUG-only flag, because user application is not supposed to-
150 * observe it anyway. Moreover, optimizing compiler would actually remove-
151 * all operations manipulating the bit in question in non-BN_DEBUG build.-
152 */-
153# define BN_FLG_FIXED_TOP 0x10000-
154# ifdef BN_DEBUG_RAND-
155# define bn_pollute(a) \-
156 do { \-
157 const BIGNUM *_bnum1 = (a); \-
158 if (_bnum1->top < _bnum1->dmax) { \-
159 unsigned char _tmp_char; \-
160 /* We cast away const without the compiler knowing, any \-
161 * *genuinely* constant variables that aren't mutable \-
162 * wouldn't be constructed with top!=dmax. */ \-
163 BN_ULONG *_not_const; \-
164 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \-
165 RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\-
166 memset(_not_const + _bnum1->top, _tmp_char, \-
167 sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \-
168 } \-
169 } while(0)-
170# else-
171# define bn_pollute(a)-
172# endif-
173# define bn_check_top(a) \-
174 do { \-
175 const BIGNUM *_bnum2 = (a); \-
176 if (_bnum2 != NULL) { \-
177 int _top = _bnum2->top; \-
178 (void)ossl_assert((_top == 0 && !_bnum2->neg) || \-
179 (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \-
180 || _bnum2->d[_top - 1] != 0))); \-
181 bn_pollute(_bnum2); \-
182 } \-
183 } while(0)-
184-
185# define bn_fix_top(a) bn_check_top(a)-
186-
187# define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)-
188# define bn_wcheck_size(bn, words) \-
189 do { \-
190 const BIGNUM *_bnum2 = (bn); \-
191 assert((words) <= (_bnum2)->dmax && \-
192 (words) >= (_bnum2)->top); \-
193 /* avoid unused variable warning with NDEBUG */ \-
194 (void)(_bnum2); \-
195 } while(0)-
196-
197# else /* !BN_DEBUG */-
198-
199# define BN_FLG_FIXED_TOP 0-
200# define bn_pollute(a)-
201# define bn_check_top(a)-
202# define bn_fix_top(a) bn_correct_top(a)-
203# define bn_check_size(bn, bits)-
204# define bn_wcheck_size(bn, words)-
205-
206# endif-
207-
208BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,-
209 BN_ULONG w);-
210BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);-
211void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);-
212BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);-
213BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,-
214 int num);-
215BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,-
216 int num);-
217-
218struct bignum_st {-
219 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit-
220 * chunks. */-
221 int top; /* Index of last used d +1. */-
222 /* The next are internal book keeping for bn_expand. */-
223 int dmax; /* Size of the d array. */-
224 int neg; /* one if the number is negative */-
225 int flags;-
226};-
227-
228/* Used for montgomery multiplication */-
229struct bn_mont_ctx_st {-
230 int ri; /* number of bits in R */-
231 BIGNUM RR; /* used to convert to montgomery form,-
232 possibly zero-padded */-
233 BIGNUM N; /* The modulus */-
234 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only-
235 * stored for bignum algorithm) */-
236 BN_ULONG n0[2]; /* least significant word(s) of Ni; (type-
237 * changed with 0.9.9, was "BN_ULONG n0;"-
238 * before) */-
239 int flags;-
240};-
241-
242/*-
243 * Used for reciprocal division/mod functions It cannot be shared between-
244 * threads-
245 */-
246struct bn_recp_ctx_st {-
247 BIGNUM N; /* the divisor */-
248 BIGNUM Nr; /* the reciprocal */-
249 int num_bits;-
250 int shift;-
251 int flags;-
252};-
253-
254/* Used for slow "generation" functions. */-
255struct bn_gencb_st {-
256 unsigned int ver; /* To handle binary (in)compatibility */-
257 void *arg; /* callback-specific data */-
258 union {-
259 /* if (ver==1) - handles old style callbacks */-
260 void (*cb_1) (int, int, void *);-
261 /* if (ver==2) - new callback style */-
262 int (*cb_2) (int, int, BN_GENCB *);-
263 } cb;-
264};-
265-
266/*--
267 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions-
268 *-
269 *-
270 * For window size 'w' (w >= 2) and a random 'b' bits exponent,-
271 * the number of multiplications is a constant plus on average-
272 *-
273 * 2^(w-1) + (b-w)/(w+1);-
274 *-
275 * here 2^(w-1) is for precomputing the table (we actually need-
276 * entries only for windows that have the lowest bit set), and-
277 * (b-w)/(w+1) is an approximation for the expected number of-
278 * w-bit windows, not counting the first one.-
279 *-
280 * Thus we should use-
281 *-
282 * w >= 6 if b > 671-
283 * w = 5 if 671 > b > 239-
284 * w = 4 if 239 > b > 79-
285 * w = 3 if 79 > b > 23-
286 * w <= 2 if 23 > b-
287 *-
288 * (with draws in between). Very small exponents are often selected-
289 * with low Hamming weight, so we use w = 1 for b <= 23.-
290 */-
291# define BN_window_bits_for_exponent_size(b) \-
292 ((b) > 671 ? 6 : \-
293 (b) > 239 ? 5 : \-
294 (b) > 79 ? 4 : \-
295 (b) > 23 ? 3 : 1)-
296-
297/*-
298 * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache-
299 * line width of the target processor is at least the following value.-
300 */-
301# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )-
302# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)-
303-
304/*-
305 * Window sizes optimized for fixed window size modular exponentiation-
306 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of-
307 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed-
308 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are-
309 * defined for cache line sizes of 32 and 64, cache line sizes where-
310 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be-
311 * used on processors that have a 128 byte or greater cache line size.-
312 */-
313# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64-
314-
315# define BN_window_bits_for_ctime_exponent_size(b) \-
316 ((b) > 937 ? 6 : \-
317 (b) > 306 ? 5 : \-
318 (b) > 89 ? 4 : \-
319 (b) > 22 ? 3 : 1)-
320# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)-
321-
322# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32-
323-
324# define BN_window_bits_for_ctime_exponent_size(b) \-
325 ((b) > 306 ? 5 : \-
326 (b) > 89 ? 4 : \-
327 (b) > 22 ? 3 : 1)-
328# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)-
329-
330# endif-
331-
332/* Pentium pro 16,16,16,32,64 */-
333/* Alpha 16,16,16,16.64 */-
334# define BN_MULL_SIZE_NORMAL (16)/* 32 */-
335# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */-
336# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */-
337# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */-
338# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */-
339-
340/*-
341 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to-
342 * size_t was used to perform integer-only operations on pointers. This-
343 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t-
344 * is still only 32 bits. What's needed in these cases is an integer type-
345 * with the same size as a pointer, which size_t is not certain to be. The-
346 * only fix here is VMS-specific.-
347 */-
348# if defined(OPENSSL_SYS_VMS)-
349# if __INITIAL_POINTER_SIZE == 64-
350# define PTR_SIZE_INT long long-
351# else /* __INITIAL_POINTER_SIZE == 64 */-
352# define PTR_SIZE_INT int-
353# endif /* __INITIAL_POINTER_SIZE == 64 [else] */-
354# elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */-
355# define PTR_SIZE_INT size_t-
356# endif /* defined(OPENSSL_SYS_VMS) [else] */-
357-
358# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)-
359/*-
360 * BN_UMULT_HIGH section.-
361 * If the compiler doesn't support 2*N integer type, then you have to-
362 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some-
363 * shifts and additions which unavoidably results in severe performance-
364 * penalties. Of course provided that the hardware is capable of producing-
365 * 2*N result... That's when you normally start considering assembler-
366 * implementation. However! It should be pointed out that some CPUs (e.g.,-
367 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating-
368 * the upper half of the product placing the result into a general-
369 * purpose register. Now *if* the compiler supports inline assembler,-
370 * then it's not impossible to implement the "bignum" routines (and have-
371 * the compiler optimize 'em) exhibiting "native" performance in C. That's-
372 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do-
373 * support 2*64 integer type, which is also used here.-
374 */-
375# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \-
376 (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))-
377# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)-
378# define BN_UMULT_LOHI(low,high,a,b) ({ \-
379 __uint128_t ret=(__uint128_t)(a)*(b); \-
380 (high)=ret>>64; (low)=ret; })-
381# elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))-
382# if defined(__DECC)-
383# include <c_asm.h>-
384# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))-
385# elif defined(__GNUC__) && __GNUC__>=2-
386# define BN_UMULT_HIGH(a,b) ({ \-
387 register BN_ULONG ret; \-
388 asm ("umulh %1,%2,%0" \-
389 : "=r"(ret) \-
390 : "r"(a), "r"(b)); \-
391 ret; })-
392# endif /* compiler */-
393# elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)-
394# if defined(__GNUC__) && __GNUC__>=2-
395# define BN_UMULT_HIGH(a,b) ({ \-
396 register BN_ULONG ret; \-
397 asm ("mulhdu %0,%1,%2" \-
398 : "=r"(ret) \-
399 : "r"(a), "r"(b)); \-
400 ret; })-
401# endif /* compiler */-
402# elif (defined(__x86_64) || defined(__x86_64__)) && \-
403 (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))-
404# if defined(__GNUC__) && __GNUC__>=2-
405# define BN_UMULT_HIGH(a,b) ({ \-
406 register BN_ULONG ret,discard; \-
407 asm ("mulq %3" \-
408 : "=a"(discard),"=d"(ret) \-
409 : "a"(a), "g"(b) \-
410 : "cc"); \-
411 ret; })-
412# define BN_UMULT_LOHI(low,high,a,b) \-
413 asm ("mulq %3" \-
414 : "=a"(low),"=d"(high) \-
415 : "a"(a),"g"(b) \-
416 : "cc");-
417# endif-
418# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)-
419# if defined(_MSC_VER) && _MSC_VER>=1400-
420unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);-
421unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,-
422 unsigned __int64 *h);-
423# pragma intrinsic(__umulh,_umul128)-
424# define BN_UMULT_HIGH(a,b) __umulh((a),(b))-
425# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))-
426# endif-
427# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))-
428# if defined(__GNUC__) && __GNUC__>=2-
429# define BN_UMULT_HIGH(a,b) ({ \-
430 register BN_ULONG ret; \-
431 asm ("dmultu %1,%2" \-
432 : "=h"(ret) \-
433 : "r"(a), "r"(b) : "l"); \-
434 ret; })-
435# define BN_UMULT_LOHI(low,high,a,b) \-
436 asm ("dmultu %2,%3" \-
437 : "=l"(low),"=h"(high) \-
438 : "r"(a), "r"(b));-
439# endif-
440# elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)-
441# if defined(__GNUC__) && __GNUC__>=2-
442# define BN_UMULT_HIGH(a,b) ({ \-
443 register BN_ULONG ret; \-
444 asm ("umulh %0,%1,%2" \-
445 : "=r"(ret) \-
446 : "r"(a), "r"(b)); \-
447 ret; })-
448# endif-
449# endif /* cpu */-
450# endif /* OPENSSL_NO_ASM */-
451-
452# ifdef BN_DEBUG_RAND-
453# define bn_clear_top2max(a) \-
454 { \-
455 int ind = (a)->dmax - (a)->top; \-
456 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \-
457 for (; ind != 0; ind--) \-
458 *(++ftl) = 0x0; \-
459 }-
460# else-
461# define bn_clear_top2max(a)-
462# endif-
463-
464# ifdef BN_LLONG-
465/*******************************************************************-
466 * Using the long long type, has to be twice as wide as BN_ULONG...-
467 */-
468# define Lw(t) (((BN_ULONG)(t))&BN_MASK2)-
469# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)-
470-
471# define mul_add(r,a,w,c) { \-
472 BN_ULLONG t; \-
473 t=(BN_ULLONG)w * (a) + (r) + (c); \-
474 (r)= Lw(t); \-
475 (c)= Hw(t); \-
476 }-
477-
478# define mul(r,a,w,c) { \-
479 BN_ULLONG t; \-
480 t=(BN_ULLONG)w * (a) + (c); \-
481 (r)= Lw(t); \-
482 (c)= Hw(t); \-
483 }-
484-
485# define sqr(r0,r1,a) { \-
486 BN_ULLONG t; \-
487 t=(BN_ULLONG)(a)*(a); \-
488 (r0)=Lw(t); \-
489 (r1)=Hw(t); \-
490 }-
491-
492# elif defined(BN_UMULT_LOHI)-
493# define mul_add(r,a,w,c) { \-
494 BN_ULONG high,low,ret,tmp=(a); \-
495 ret = (r); \-
496 BN_UMULT_LOHI(low,high,w,tmp); \-
497 ret += (c); \-
498 (c) = (ret<(c))?1:0; \-
499 (c) += high; \-
500 ret += low; \-
501 (c) += (ret<low)?1:0; \-
502 (r) = ret; \-
503 }-
504-
505# define mul(r,a,w,c) { \-
506 BN_ULONG high,low,ret,ta=(a); \-
507 BN_UMULT_LOHI(low,high,w,ta); \-
508 ret = low + (c); \-
509 (c) = high; \-
510 (c) += (ret<low)?1:0; \-
511 (r) = ret; \-
512 }-
513-
514# define sqr(r0,r1,a) { \-
515 BN_ULONG tmp=(a); \-
516 BN_UMULT_LOHI(r0,r1,tmp,tmp); \-
517 }-
518-
519# elif defined(BN_UMULT_HIGH)-
520# define mul_add(r,a,w,c) { \-
521 BN_ULONG high,low,ret,tmp=(a); \-
522 ret = (r); \-
523 high= BN_UMULT_HIGH(w,tmp); \-
524 ret += (c); \-
525 low = (w) * tmp; \-
526 (c) = (ret<(c))?1:0; \-
527 (c) += high; \-
528 ret += low; \-
529 (c) += (ret<low)?1:0; \-
530 (r) = ret; \-
531 }-
532-
533# define mul(r,a,w,c) { \-
534 BN_ULONG high,low,ret,ta=(a); \-
535 low = (w) * ta; \-
536 high= BN_UMULT_HIGH(w,ta); \-
537 ret = low + (c); \-
538 (c) = high; \-
539 (c) += (ret<low)?1:0; \-
540 (r) = ret; \-
541 }-
542-
543# define sqr(r0,r1,a) { \-
544 BN_ULONG tmp=(a); \-
545 (r0) = tmp * tmp; \-
546 (r1) = BN_UMULT_HIGH(tmp,tmp); \-
547 }-
548-
549# else-
550/*************************************************************-
551 * No long long type-
552 */-
553-
554# define LBITS(a) ((a)&BN_MASK2l)-
555# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)-
556# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)-
557-
558# define LLBITS(a) ((a)&BN_MASKl)-
559# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)-
560# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)-
561-
562# define mul64(l,h,bl,bh) \-
563 { \-
564 BN_ULONG m,m1,lt,ht; \-
565 \-
566 lt=l; \-
567 ht=h; \-
568 m =(bh)*(lt); \-
569 lt=(bl)*(lt); \-
570 m1=(bl)*(ht); \-
571 ht =(bh)*(ht); \-
572 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \-
573 ht+=HBITS(m); \-
574 m1=L2HBITS(m); \-
575 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \-
576 (l)=lt; \-
577 (h)=ht; \-
578 }-
579-
580# define sqr64(lo,ho,in) \-
581 { \-
582 BN_ULONG l,h,m; \-
583 \-
584 h=(in); \-
585 l=LBITS(h); \-
586 h=HBITS(h); \-
587 m =(l)*(h); \-
588 l*=l; \-
589 h*=h; \-
590 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \-
591 m =(m&BN_MASK2l)<<(BN_BITS4+1); \-
592 l=(l+m)&BN_MASK2; if (l < m) h++; \-
593 (lo)=l; \-
594 (ho)=h; \-
595 }-
596-
597# define mul_add(r,a,bl,bh,c) { \-
598 BN_ULONG l,h; \-
599 \-
600 h= (a); \-
601 l=LBITS(h); \-
602 h=HBITS(h); \-
603 mul64(l,h,(bl),(bh)); \-
604 \-
605 /* non-multiply part */ \-
606 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \-
607 (c)=(r); \-
608 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \-
609 (c)=h&BN_MASK2; \-
610 (r)=l; \-
611 }-
612-
613# define mul(r,a,bl,bh,c) { \-
614 BN_ULONG l,h; \-
615 \-
616 h= (a); \-
617 l=LBITS(h); \-
618 h=HBITS(h); \-
619 mul64(l,h,(bl),(bh)); \-
620 \-
621 /* non-multiply part */ \-
622 l+=(c); if ((l&BN_MASK2) < (c)) h++; \-
623 (c)=h&BN_MASK2; \-
624 (r)=l&BN_MASK2; \-
625 }-
626# endif /* !BN_LLONG */-
627-
628void BN_RECP_CTX_init(BN_RECP_CTX *recp);-
629void BN_MONT_CTX_init(BN_MONT_CTX *ctx);-
630-
631void bn_init(BIGNUM *a);-
632void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);-
633void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);-
634void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);-
635void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);-
636void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);-
637void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);-
638int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);-
639int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);-
640void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,-
641 int dna, int dnb, BN_ULONG *t);-
642void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,-
643 int n, int tna, int tnb, BN_ULONG *t);-
644void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);-
645void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);-
646void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,-
647 BN_ULONG *t);-
648BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,-
649 int cl, int dl);-
650int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,-
651 const BN_ULONG *np, const BN_ULONG *n0, int num);-
652-
653BIGNUM *int_bn_mod_inverse(BIGNUM *in,-
654 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,-
655 int *noinv);-
656-
657int bn_probable_prime_dh(BIGNUM *rnd, int bits,-
658 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);-
659-
660static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)-
661{-
662 if (bits > (INT_MAX - BN_BITS2 + 1))
bits > (0x7fff...- (8 * 8) + 1)Description
TRUEnever evaluated
FALSEevaluated 97690369 times by 2 tests
Evaluated by:
  • libcrypto.so.1.1
  • sm2_internal_test
0-97690369
663 return NULL;
never executed: return ((void *)0) ;
0
664-
665 if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
((bits+(8 * 8)...) <= (a)->dmaxDescription
TRUEevaluated 96286538 times by 2 tests
Evaluated by:
  • libcrypto.so.1.1
  • sm2_internal_test
FALSEevaluated 1403831 times by 2 tests
Evaluated by:
  • libcrypto.so.1.1
  • sm2_internal_test
1403831-96286538
666 return a;
executed 96286538 times by 2 tests: return a;
Executed by:
  • libcrypto.so.1.1
  • sm2_internal_test
96286538
667-
668 return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
executed 1403831 times by 2 tests: return bn_expand2((a),(bits+(8 * 8)-1)/(8 * 8));
Executed by:
  • libcrypto.so.1.1
  • sm2_internal_test
1403831
669}-
670-
671#endif-
Source codeSwitch to Preprocessed file

Generated by Squish Coco 4.2.2